Practical 3: Solubility, Sorption and Ion Exchange Equilibria Applied to Soil and Groundwater

The goal of this practical is to use solubility and surface complexation calculations to predict the aqueous concentrations of a toxic metal (Pb) in water equilibrated with a contaminated soil. As with earlier practicals, the strategy you should use is to write out the equilibrium expressions and take the p-function of both sides to get a set of simple linear equations that you can solve.

1. A soil contains 50 ppm Pb (Atomic mass = 207.2) as PbSO₄ (anglesite). The porosity of the soil is 15 % and the density of the soil is 2.65 g/cm^3 . For the problems below, use the table of equilibrium constants:

Reaction	pK
$PbSO_4 = Pb^{2+} + SO_4^{-2}$	7.8
$PbCO_3 = Pb^{2+} + CO_3^{-2}$	13.1
$CaSO_4 = Ca^{2+} + SO_4^{-2}$	4.4
$CaCO_3 = Ca^{2+} + CO_3^{-2}$	8.5
$HCO_3^- = H^+ + CO_3^{-2}$	10.33
$CO_2 + H_2O = H_2CO_3$	1.46
$H_2CO_3 = H^+ + HCO_3^{-2}$	6.35

- (a) Calculate the concentration of Pb in a solution that saturates the solution in pore space of the soil. Assume that only anglesite is present. Does the amount of anglesite in the soil matter? Assume charge balance requires $[Pb^{2+}] = [SO_4^{-2}]$.
- (b) Now assume that the soil also contains 1 wt. % CaSO₄ (anhydrite). What does the charge balance condition require? Does the amount of anhydrite matter? Calculate the concentration of Pb in the porewater.
- (c) Now assume that the soil also contains 1 wt % $CaCO_3$. Will PbSO₄ dissolve to precipitate PbCO₃? Calculate the solubility of Pb if the pH of the soil is 8 and is in equilbrium with the atmosphere so that $P_{CO2} = 10^{-3.5}$

(d) Now include the effect of sorption on FeOOH (5 wt. %) in the soil at pH 8. The surface area of the FeOOH is 30 m²/g and there are 3 >FeOH sites/nm². (note: >FeOH means a surface site). Relevant equilbria are

Reaction	рK
>FeOH + H+ = >FeOH ₂ +	-9.2
>FeOH + Pb ⁺² = >FeOHPb ⁺²	-4.65

First, calculate the maximum sorption capacity of the goethite. Then assume, as a first approximation, that essentially all of the Pb sorbs to the goethite to get a value for {>FeOHPb⁺²}. Now, calculate the resulting concentration of dissolved Pb that would be in equilbrium with a goethite with that value of {>FeOHPb⁺²}. Note that you have {>FeOH}/{>FeOH₂⁺} = $10^{-pKa}10^{-pH}$ and also {>FeOH} + {>FeOHPb} = 1.

- e) If you understand all this, do it again for the soil at pH = 6.
- 2. Water from the Bath Hot Springs (pH = 6.65) has the following chemical analysis:

	1	1
	mol/kg	pC
HCO ₃ -	3.147 x 10 ⁻³	
Ва	1.75 x 10 ⁻⁷	
Ca	9.52 x 10 ⁻³	
CI	8.09 x 10 ⁻³	
Fe ⁺²	1.77 x 10 ⁻⁵	
K	4.45 x 10 ⁻⁴	
Mg	2.18 x 10 ⁻³	
Mn	1.24 x 10 ⁻⁶	
Na	7.96 x 10 ⁻³	
SO ₄	1.08 x 10 ⁻²	
Si	3.43 x 10 ⁻⁴	
Sr	6.73 x 10 ⁻⁵	

What minerals has this water equilibrated with? To find out, calculate the **saturation index** (log (Q/K) = pK-pQ) of each candidate mineral. The quantity Q is the observed "ion activity product" of a mineral. For example, the Q for KCl (sylvite) in the above analysis is [K][Cl] = $(4.45 \times 10^{-4})(8.09 \times 10^{-3})$ = 3.6 x10⁻⁶. You need the following equilibria:

Equilibrium	pK	pQ
$CaCO_3 = Ca^{2+} + CO_3^{-2}$	8.48	
CO ₃ - + H+ = HCO ₃ -	-10.33	
$MgSO_4.7H_2O = Mg^{2+} + SO_4^{-2} + 7H_2O$	1.96	

$BaSO_4 = Ba^{+2} + SO_4^{-2}$	9.98
$CaSO_4-2H_2O = Ca2+ + SO_4^{-2} + 2H_2O$	4.85
SiO_2 (quartz) + $2H_2O = H_4SiO_4$	4.0
SiO_2 (amorphous) + $2H_2O = H_4SiO_4$	3.0
$FeCO_3 = Fe^{2+} + CO_3^{-2}$	10.6
$Mg_2Si_3O_7.5OH:3H_2O$ (sepiolite) + 0.5 H_2O +	-15.91
$4H+ = 2Mg^{+2} + 3H_4SiO_4$	
$CaMg(CO_3)_2$ (dolomite) = $Ca^{+2} + Mg^{+2} +$	17.0
2CO ₃ -2	

When the saturation index > 0, (pQ < pK) then the mineral will want to precipitate out; when SI = 0 (pQ = pK) the solution is in equilibrium with that mineral; when SI < 0 (pQ > pK), the mineral will dissolve in the solution. Because of analytical error and kinetics, you can assume that if pQ = pK +/- 0.4 then the solution is saturated in that mineral. Assume now that all of the iron oxidizes when reaching the surface. Will Fe(OH)₃ precipitate out and make a rusty mess at Bath Spa? You need the following equilibria: (Hint: work out the dominant Fe dissolved complex (e.g. Fe³⁺, Fe(OH)₂+ or Fe(OH)₃0 at pH 6.65 and the equilibrium expression for Fe(OH)₃(ferrihydrite) dissolving to give that complex.

$Fe(OH)_3$ (ferrihydrite) + 3H+ = Fe^{+3} + 3H ₂ O	-4.9
$Fe^{+3} + 2H_2O = Fe(OH)_2^+ + 2H+$	5.7
$Fe^{+3} + 3H_2O = Fe(OH)_3^0 + 3H+$	13.6

3. Consider the ion exchange reaction

$$Ca^{2+} + Na_2-Clay = Ca-Clay + 2Na^+$$

with

$$K_s = \frac{N_{Ca}[Na]^2}{N_{Na}^2[Ca]} = 2.35$$

- a) Calculate the equivalent fraction of exchange sites occupied by Ca if [Na] =0.1 M and [Ca] = 0.1 M assuming activities = concentrations.
- b) Do the same as in a) but when the soil solution is diluted by a factor of 100. What is the effect of dilution on the Na content of the clay?

4. Consider the uptake of Cs+ by a Ca⁺² clay: In terms of Cation Exchange capacity (CEC), we can write:

$$N_{Cs} = \frac{M_{Cs}}{CEC};$$
 $N_{Ca} = \frac{M_{Ca}/2}{CEC} = \frac{CEC - M_{Cs}}{CEC}$

where M_{Cs} is the number of mmoles of Cs per kg/clay

$$K_s = \frac{(M_{Cs} / CEC)^2 [Ca^{2+}]}{\left(\frac{CEC - M_{Cs}}{CEC}\right) [Cs^{+}]^2} = 2.35$$

Supposing at clay had a cation exchange capacity of 200 mmoles/kg. Calculate the K_d for Cs between clay and the soil solution with [Ca] = 0.001 and [Cs] = 0.001 M. What assumptions have to be made before you can use this K_d in a contaminant-transport model?