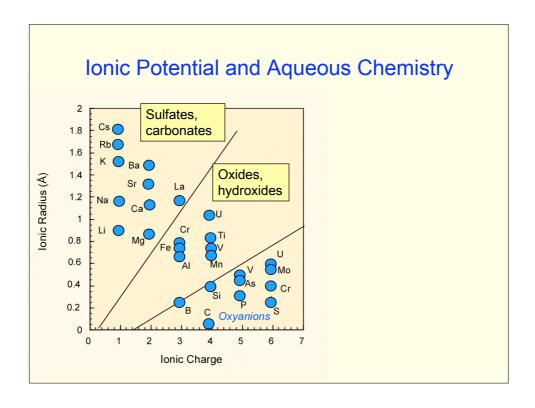
Solubility Equilibria and Solid Solutions

Physical Chemistry of Minerals and Solutions DM Sherman, University of Bristol

Geochemical Motivation

- •Solubility equilibria control the major element compositions of natural waters.
- •Several important kinds of sedimentary rock are precipitates from aqueous solutions (e.g., carbonates, evaporites).
- •Many important kinds of ore-deposits result from precipitation from hydrothermal and diagenetic solutions.



Congruent vs. Incongruent Dissolution

Congruent dissolution (all products are soluble):

(i)
$$CaSO_4(s) = Ca^{2+} + SO_4^{2-}$$

(ii)
$$CaCO_3(s) = Ca^{2+} + CO_3^{2-}$$

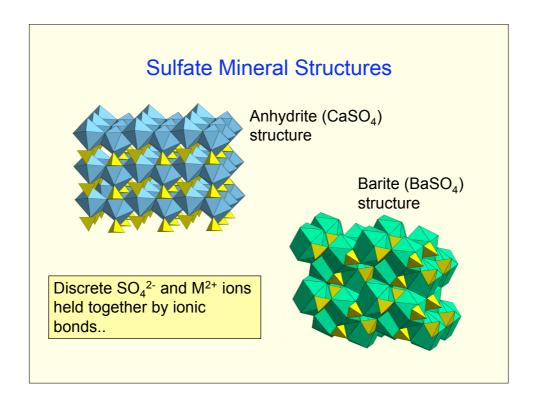
Incongruent dissolution (new solids form):

(i)
$$2KAISi_3O_8(s) + 2H_2O =$$

$$Al_2Si_2O_5(OH)_4(s) + 2K^+ + 2OH^-$$

(ii)
$$KFe_3(SO_4)_2(OH)_6(s) + 3H_2O =$$

$$K^+ + 3Fe(OH)_3(s) + 2SO_4^{2-} + 3H^+$$



Solubility of Sulfate Minerals

Solubility Equilibrium	pK
$CaSO_4 = Ca^{+2} + SO_4^{-2}$	4.2
$SrSO_4 = Sr^{+2} + SO_4^{-2}$	6.6
$PbSO_4 = Pb^{+2} + SO_4^{-2}$	7.7
$BaSO_4 = Ba^{+2} + SO_4^{-2}$	10.0
	CaSO ₄ = Ca ⁺² + SO ₄ ⁻² SrSO ₄ = Sr ⁺² + SO ₄ ⁻² PbSO ₄ = Pb ⁺² + SO ₄ ⁻²

If (and only if) the solution is in equilibrium with solid MSO_4 :

 $K = \frac{a_{M}a_{SO_{4}}}{a_{MSO_{4}}} \approx [M^{2+}][SO_{4}^{-2}]$

=1 if pure phase

Saturation, Unsaturation and Supersaturation

Consider the dissolution of $CaSO_4 = Ca^{2+} + SO_4^{-2}$:

- •A solution will be **saturated** in a solid $CaSO_4$ if that solid is present. The ion product $[Ca][SO_4] = K$.
- •A solution will be *unsaturated* if solid CaSO₄ is absent and [Ca][SO₄] < K.
- •A solution will be **supersaturated** if $CaSO_4$ is absent and $[Ca][SO_4] > K$.
- •The **saturation index** $Q = log([Ca][SO_4]/K)$.

Simple Solubility Calculations

Example: Calculate the concentration of Pb in a solution saturated with PbSO₄. pK for PbSO₄ is 7.7.

Solution: PbSO₄ dissolves according to

$$PbSO_4 = Pb^{2+} + SO_4^{2-}$$

With K = [Pb][SO₄] = 2×10^{-7} . If no other species are present, then, by charge balance we have

$$[Pb] = [SO_4] = x$$

Hence, $x^2 = K$ so that $x = [Pb] = 1.4 \times 10^{-4}$ moles/liter.

Simple Solubility Calculations (Cont.)

We can convert to ppm (mg/kg) as follows: Since the atomic mass of Pb is 207.2 g/mole, we have

$$\frac{1.4 \times 10^{-4} \text{moles Pb}}{\text{liter H}_2\text{O}} \times \frac{207.2 \text{ g Pb}}{\text{mole P}b} \times \frac{1 \text{liter H}_2\text{O}}{\text{kg H}_2\text{O}} \times \frac{1000 \text{ mg}}{\text{g}}$$

 $= 29.3 \text{ mg Pb/kg H}_2\text{O}$

The Common Ion Effect

Example: Calculate the solubility of Pb in a solution saturated with $CaSO_4$. pK for $PbSO_4$ is 7.7 while pK for $CaSO_4$ is 4.2.

We have two equilibria:

$$CaSO_4 = Ca^{2+} + SO_4^{2-}$$

with $K_1 = [Ca][SO_4] = 6.3 \times 10^{-5}$, and

$$PbSO_4 = Pb^{2+} + SO_4^{2-}$$

with $K_2 = [Pb][SO_4] = 2 \times 10^{-8}$. By charge balance we have

$$[Ca] + [Pb] = [SO_4]$$

The Common Ion Effect

But since CaSO₄ is much more soluble PbSO₄,

$$[Ca] >> [Pb] \text{ or } [Ca] + [Pb] = [Ca].$$

Hence,

$$[Ca] = [SO_4] = x$$

Since

$$K_1 = [Ca][SO_4] = 6.3 \times 10^{-5}$$

we get

$$[SO_4] = 7.9 \times 10^{-3}$$

Now
$$K_2 = [Pb][SO_4] = 2.0 \times 10^{-8}$$

$$[Pb](7.9 \times 10^{-3}) = 2.0 \times 10^{-8}$$

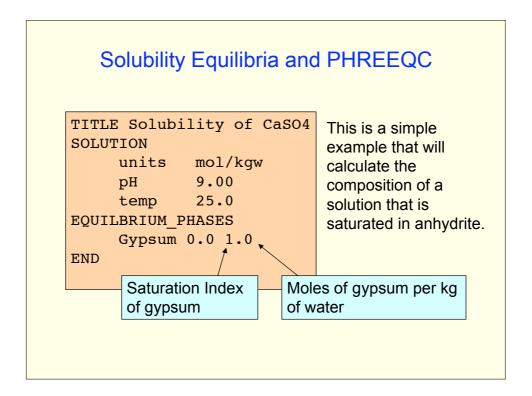
The Common Ion Effect (Cont.)

Or

[Pb] =
$$2.5 \times 10^{-6}$$
 moles/liter.

Note how the solubility of $PbSO_4$ is much lower in the presence of $CaSO_4$.

The presence of minerals such as CaCO₃ and CaSO₄ can suppress the solubility of metals such as Pb and Cd via the *common ion effect*.



Solubility and Solid Solutions

When an ion can be incorporated into a mineral by isomorphic substitution (solid solution), the aqueous solubility of the ion is greatly decreased.

We calculated the solubility of PbSO₄ to be [Pb] = 1.4×10^{-4} moles/liter. In the presence of CaSO₄, this decreased to 2.5×10^{-6} moles/liter due to the common ion effect.

If PbSO₄ is in solid solution with CaSO₄ then the activity of PbSO₄ solid will no longer be 1. Assuming ideal solid solution, we have

$$a_{PbSO_4} = X_{PbSO_4}$$

Solubility and Solid Solutions (Cont.)

Example: Calculate the solubility of PbSO₄ when it is in solid solution with CaSO₄ with $X_{PbSO4} = 0.001$.

Solution: Our solubility product expression will now be

$$K = \frac{[Pb][SO_4]}{a_{PbSO_4}} = \frac{[Pb][SO_4]}{X_{PbSO_4}} = 2.0 \times 10^{-8}$$

 $[SO_4^{2-}]$ will be determined by the solubility of CaSO₄ to give $[SO_4]$ = 7.9 x 10⁻³ moles/liter. Hence,

[Pb] =
$$3.0 \times 10^{-9}$$
 moles/liter

Solid Solutions in PHREEQC

An ideal solution treatment for CaSO₄-SrSO₄-BaSO₄:

```
TITLE sstest
SOLID_SOLUTIONS 1
CaSrBaSO4
-comp Anhydrite 1.5
-comp Celestite 0.05
-comp Barite 0.05
SOLUTION 1
units mol/kgw
pH 9.00
temp 25.0
END
```

Non-Ideal Solutions

In a *non-ideal* solution, there is an excess free energy of mixing:

$$G_{mix} = X_A \mu_A + X_B \mu_B + G_{ex}$$

The excess free energy per mole of component

$$\overline{G}_1^{ex} = RT \ln \gamma_1$$

$$\overline{G}_2^{ex} = RT \ln \gamma_2$$

Non-Ideal Solutions: Margules Model

The *Margules model* attempts to express the excess free energy as (for a binary solution):

$$G_{\text{ex}} = X_1(W_2X_1X_2) + X_2(W_1X_1X_2)$$

$$RT \ln \gamma_1 = (2W_2 - W_1)X_2^2 + 2(W_1 - W_2)X_2^2$$

$$RT \ln \gamma_2 = (2W_1 - W_2)X_1^2 + 2(W_2 - W_1)X_1^2$$

Non-Ideal Solutions: Margules Model

The *dimensionless interaction parameters* are simply

$$a_1 = W_1 / RT$$
 $a_2 = W_2 / RT$

In PHREEQC, these are called non-dimensional Guggenheim parameters.

Example: Calcite-Dolomite

```
SOLID_SOLUTIONS 1
Ca(x)Mg(1-x)CO3 # Binary, nonideal
-comp1 Calcite 0.097
-comp2 Ca.5Mg.5CO3 0.003
-temp 25.0
-Gugg_nondim 5.08 1.90
```

Non-Ideal Solutions: Regular Solution Model

$$\Delta G_{mix} = \Delta H_{mix} - T\Delta S_{mix}$$

In a *non-ideal regular solution model*, we assume that

$$\Delta S_{mix} = \Delta S_{mix}(ideal)$$

but that

$$\Delta H_{mix} \neq 0$$

i.e., we are assuming that there is no excess vibrational entropy of mixing.

Symmetric Regular Solutions

For a **symmetric** regular solution

$$a_1 = a_2 = \lambda$$

So that,

$$\ln \gamma_1 = \lambda X_2^2$$

$$\ln \gamma_2 = \lambda X_1^2$$

This model is good for sulfate and carbonate minerals.

Symmetric Regular Solutions

Example, calcite-magnesite solid solution:

```
SOLID_SOLUTIONS 1
Ca(x)Mg(1-x)CO3
-comp1 Calcite 0.00
-comp2 Magnesite 0.00
-Gugg_nondim 3.7 0.0
```

Regular, Symmetric Solution Model

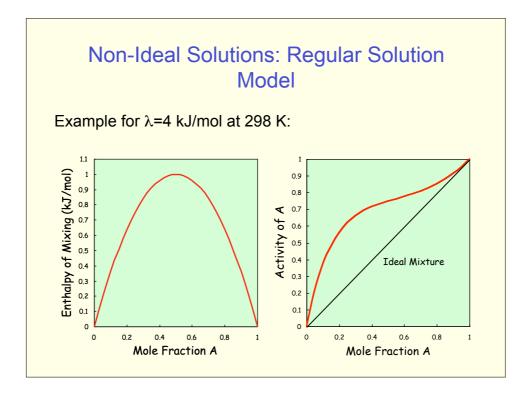
In a regular, symmetric solution, the enthalpy of mixing as

$$\Delta H_{mix} = \lambda X_A X_B = \lambda X_A (1 - X_A)$$

Then for a simple binary solution (e.g., (A,B)O):

$$\mu_A = \mu_A^0 + RT \ln X_A + \lambda (1 - X_A)^2$$

$$a_A = X_A \exp\left(\frac{\lambda(1-X_A)^2}{RT}\right)$$



Example: Cr in Jarosite

(Baron and Palmer, 2002)

$$KFe_3(SO_4)_2(OH)_6$$
- $_KFe_3(CrO_4)_2(OH)_6$

$$\Delta G_{ex} = X_{Cr} X_{S} R T a_0$$

With
$$a_0 = -4.9 +/- 0.8$$

Example: Mg in Calcite

(Baron and Palmer, 2002)

$$KFe_3(SO_4)_2(OH)_6$$
- $_KFe_3(CrO_4)_2(OH)_6$

$$\Delta G_{\rm ex} = X_{\rm Cr} X_{\rm S} R T a_0$$

With
$$a_0 = -4.9 + /- 0.8$$

The Phase Rule

$$f = c - p + 2$$

- •A *phase* is something that can be mechanically separated from the other phases (e.g., ice, water).
- •A *component* is one of the smallest number of chemical species needed to define the compositions of the phases in the system (e.g., H₂O).
- •A *degree of freedom* is a property that can be independently varied (e.g., P, T).

The Phase Rule

Example: the system $Ca^{2+} + CO_3^{-2} + H_2O + H^+$

Calcite (CaCO₃) + Aqueous solution + CO₂(g)

$$C = 4$$
; $p = 3$ so $f = 3$. (e.g., P,T, pCO_2 , pH)

Example: SiO₂ (qtz) + H₄SiO₄(aq) + Aqueous solution

$$C = 2$$
; $p = 2$ so $f = 2$ (e.g., P,T , $[H_2SiO_4]$)

Summary

- •+2 and +3 cations can form insoluble carbonates, sulfates, sulfides and hydroxides.
- •Solubility expression (congruent vs. incongruent).
- •pH dependence of hydroxide, sulfide and carbonate solubilities.
- •Common ion effect.
- Effect of solid solution.
- •Complexing of metals by ligands will enhance solubility.
- •Phase Rule